

Improved Sea Ice Forecasts through Classification and Assimilation of SAR imagery

By: A. Scott, D. A. Clausi, L. Wang and S. Leigh Systems Design Engineering/University of Waterloo Collaborators: T. Carrieres, M. Buehner and M. Arkett at Environment Canada

MEETING THE CHALLENGES OF OUR CHANGING OCEAN

Project objective

 Combine computer vision with data assimilation to enable assimilation of high resolution information from SAR imagery

- Data assimilation
 - Andrea Scott (Assistant Professor, UW)
 - Lei Wang (PhD student, UW)
 - Yang Chen (Undergrad Student, UW)
 - Mark Buehner (Research Scientist, EC)
 - Tom Carrieres (Modeling Manager, EC)
- Computer vision
 - David Clausi (Professor, UW)
 - Steven Leigh (Research Assistant, UW)
 - Matt Arkett (EC)

High and low resolution satellite data

Many sea ice forecasting systems rely heavily on data from passive microwave sensors

Resolution may be sufficient for weather forecasting – not for shipping or other operations in ice-infested waters

Higher resolution can be obtained from synthetic aperture radar (SAR)

How can we assimilate this information?

Objectives

Develop **automated** methods to assimilate ice/water data from SAR imagery in operational sea-ice forecasting system (robust and efficient)

Challenges

There is no direct mapping from a SAR image to parameters of interest (ice concentration, ice thickness, ice deformation)

Strategy

Start with an established computer vision method that can separate ice from water and assimilate these **binary** observations

Observations from image classification system

- MAGIC software system: IRGS + SVM (Leigh et al. 2014)
- Dual-pol RADARSAT-2 SAR -> Ice and water

HH image

Classified image: Ice/water

Method to assimilate binary observations

• Idea is to maximize the probability of the state, **x**, given the observations, **y**

$$P(\mathbf{x} | \mathbf{y}) \propto P(\mathbf{y} | \mathbf{x}) P(\mathbf{x})$$

- *P*(**x**) is modeled as Gaussian distribution
- P(y|x) is modeled empirically

Methodology

SAR images

SAR image classification MAGIC into ice/water observations (y)

If **y**=ice

Ice concentration from AMSR-E (\mathbf{x}_b)

If **y**=open water

Maximize P(x|y=1)

Maximize P(x|y=o)

Ice concentration Analysis (x_a)

Comparison of assimilation output vs. independent data

- Comparison is against ice/water analyses from IMS
- Error from assimilation output lower than background state

Verification against image analyses

Accounting for misclassified pixels

image

Confidence map

- o high confidence of water
- 1 high confidence of ice

- Confidence in ice is the total probability of ice over a region
- Confidence in water is the total probability of ice over a region
- Use in quality control

Milestones and Lessons Learned so Far...

- Positive impact of assimilating ice water observations over the Beaufort sea (Wang, Scott and Clausi, submitted to IEEE TGRS)
- Information content of binary observations may be limited a question of scale?
- Testing another method to calculate ice concentration from SAR imagery (Wang, Scott and Clausi, IGARSS 2014)
- Obtaining test sets of images with other coincident data can be challenging (due to variability of ice season, revisit time of SAR sensor and loss of AMSR-E)

Upcoming milestones

- To compare this assimilation strategy with one that uses an explicit forward model (CMOS presentation) in a realistic experiment (e.g., GSL 2014)
- To incorporate a realistic observation error estimate or quality control procedure such that erroneous observations are not assimilated
- To incorporate the assimilation of SAR data into the RIPS system (requires careful evaluation and implementation)
- To continue development of a method to automatically classify a SAR image into ice types

- To assimilate SAR data
 - in the RIPS system
 - in a coupled ice-ocean model
- What method? How to deal with dense observations?
- To assess the benefit of assimilating SAR data
 - to operations?
 - to science?
- Transition toward the use of data from RCM (Radarsat Constellation Mission)

RADARSAT-2 Data and Products © MacDONALD, DETTWILER AND ASSOCIATES LTD. (2011/2012) – All Rights Reserved RADARSAT is an official mark of the Canadian Space Agency

MARINE ENVIRONMENTAL OBSERVATION PREDICTION & RESPONSE NETWORK

www.meopar.ca 902-494-4384

Andrea Scott ka3scott@uwaterloo.ca

Observation operator

•
$$\mathcal{H}$$
:
$$\begin{vmatrix} P(\boldsymbol{y} = 1 | \boldsymbol{x}) = \frac{1}{1 + e^{-r\boldsymbol{x} + rq}}, & r, q \in \mathbb{R} & r > 0, q > 0 \\ P(\boldsymbol{y} = 0 | \boldsymbol{x}) = 1 - P(\boldsymbol{y} = 1 | \boldsymbol{x}) \end{vmatrix}$$

- r = 15
- q = 0.3 (ice concentration threshold for ice classification)

